被猛男CAO烂的小男生GV,古代妓院做爰片120分钟,电影在线观看,国产免费av片在线无码免费看


免費注冊快速求購


分享
舉報 評價

LCi-SD LCi-SD 便攜式光合儀

參考價面議
具體成交價以合同協議為準

該廠商其他產品

我也要出現在這里

LCi-SD 便攜式光合儀是zui小巧、輕便的便攜式光合作用測定儀,用以測量植物葉片的光合速率、蒸騰速率、氣孔導度等與植物光合作用相關的參數。儀器應用IRGA(紅外氣體分析)原理,精密測量葉片表面CO2濃度及水分的變化情況來考察葉片與植物光合作用相關的參數。

詳細信息 在線詢價

LCi-SD 便攜式光合儀

LCi-SD 便攜式光合儀是zui小巧、輕便的便攜式光合作用測定儀,用以測量植物葉片的光合速率、蒸騰速率、氣孔導度等與植物光合作用相關的參數。儀器應用IRGA(紅外氣體分析)原理,精密測量葉片表面CO2濃度及水分的變化情況來考察葉片與植物光合作用相關的參數。特殊的設計可在高濕度、高塵埃環(huán)境使用。既可在研究中使用,又是很好的教學儀器。

應用領域

  • 植物光合生理研究
  • 植物抗脅迫研究
  • 碳源碳匯研究
  • 植物對氣候變化的相應及其機理
  • 作物新品種篩選

 

技術特點

  • 配備手持式葉綠素熒光儀,內置了所有通用葉綠素熒光分析實驗程序,包括兩套熒光淬滅分析程序、3套光響應曲線程序、OJIP-test
  • 便攜式設計,體積輕小,僅重2Kg
  • 微型IRGA置于葉室中,大大縮短CO2測量的反應時間
  • 可在惡劣環(huán)境下使用,野外工作時間長
  • 可方便互換不同種類的葉室
  • 葉室材料經精心選擇,以確保CO2及水分的測量精度
  • 數據存儲量大,可使用即插即拔的SD
  • 操作簡單,維護方便,葉室所有區(qū)域都很容易清潔
  • 采用低能耗技術,野外單電池持續(xù)工作時間可達10小時

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

技術指標

  • 測量參數:光合速率、蒸騰速率、胞間CO2濃度、氣孔導度、葉片溫度、葉室溫度、光合有效輻射、氣壓等
  • 手持葉綠素熒光儀(選配)
  1. 測量參數包括F0FtFmFm’、QY_LnQY_DnNPQQpRfdRARAreaM0SmPIABS/RC50多個葉綠素熒光參數,及3種給光程序的光響應曲線、2種熒光淬滅曲線、OJIP曲線等
  2. 高時間分辨率,可達10萬次每秒,自動繪出OJIP曲線并給出26OJIP-test測量參數包括F0FjFiFmFvVjViFm/F0Fv/F0Fv/FmM0AreaFix AreaSmSsNPhi_P0Psi_0Phi_E0Phi-D0Phi_PavPI_AbsABS/RCTR0/RCET0/RCDI0/RC
  • CO2測量范圍:0-2000ppm
  • CO2測量分辨率:1ppm
  • CO2采用紅外分析系統,差分開路測量系統,自動置零,自動氣壓和溫度補償
  • H2O測量范圍:0-75 mbar
  • H2O測量分辨率:0.1mbar
  • H2O測量采用雙激光調諧快速響應水蒸氣傳感器
  • PAR測量范圍:0-3000 μmol m-2 s-1
  • 室溫度:-5 - 50   精度:±0.2
  • 片溫度:-5 - 50
  • 葉室中空氣流量:100 500ml / min
  • 空氣流量精度:全量程的±2%
  • 預熱時間:205分鐘
  • 數據存儲:1G SD卡,可存儲16,000,000組典型數據
  • 數據接口:mini-USB接口,RS232標準接口
  • 圖形顯示:可實時圖形顯示各測量參數
  • 可選配便攜式光源:具有PLU控制單元,控光范圍0-2300 μmol m-2 s-1
  • 可選配葉室
  1. 寬葉葉室:測量面積6.25cm2,適用于闊葉
  2. 窄葉葉室:測量面積5.2cm2,適用于條形葉
  3. 針葉葉室:適用于簇狀針葉
  4. 小型葉葉室:葉室直徑為16.5mm,適用于葉片直徑在11mm16mm之間的葉片
  5. 小型草本植物群落測量室:測量高度低于55mm的整株草本植物光合作用
  6. 整株擬南芥測量室                                                                                                  
  7. 土壤呼吸室:體積為1L,含土壤溫度傳感器
  8. 果實測量室:兩部分組成,上部透明、下部為體積為1L
  9. 熒光儀聯用適配器:適用于連接多種葉綠素熒光儀
  • 供電系統:內置12V 2.8AH鉛酸電池,可持續(xù)工作10小時左右
  • 操作環(huán)境:545
  • 主機尺寸:240×125×140mm2.4Kg
  • 主機顯示參數:環(huán)境CO2和水蒸汽;CO2和水蒸汽變化;葉室和葉片的溫度;氣流速率;大氣壓;光合有效輻射;光合速率;胞間CO2濃度;蒸騰速率;氣孔導度;電池狀態(tài)

典型應用

Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416

本文研究了Rhododendron ferrugineum(高山玫瑰杜鵑,杜鵑屬模式種)凈光合能力與葉片壽命的關系,發(fā)現有更多較老葉片的種群其光合能力更強(圖中深色區(qū)域為一年葉片和二年葉片)。

產地:英國

參考文獻(近三年發(fā)表200余篇SCI文章,僅列出部分代表性文獻)

  1. Soil moisture overshadows temperature control over soil CO2 efflux in a Pinus canariensis forest at treeline in Tenerife, Canary Islands, Brito P. et al. 2013, Acta Oecologica, 48:1-6
  2. Physiological and biochemical characteristics of Sorghum bicolor and Sorghum sudanense subjected to salt stress in two stages of development, Oliveira VP. et al. African Journal of Agricultural Research 8(8),  660-670
  3. Influence of inorganic nitrogen sources on K+/Na+ homeostasis and salt tolerance in sorghum plants, Miranda R S. et al. 2013, Acta Physiologiae Plantarum, 35(3), 841-852
  4. Contrasting Physiological Responses of Jatropha curcas Plants to Single and Combined Stresses of Salinity and Heat, Silva E N. et al. 2013, Journal of Plant Growth Regulation, 32(1), 159-169
  5. Daily photosynthetic radiation use efficiency for apple and pear leaves: Seasonal changes and estimation of canopy net carbon exchange rate, Auzmendi I, et al. 2013, European Journal of Agronomy, 51, 18
  6. Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416
  7. Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere, Domínguez M.T. et al. 2011, Chemosphere, 83(8), 1166-1174
  8. Drought induces opposite changes in the concentration of non-structural carbohydrates of two evergreen Nothofagus species of differential drought resistance, Piper F.I. 2011, Annals of Forest Science, 68(2), 415-424
  9. Shrub species affect distinctively the functioning of scattered Quercus ilex trees in Mediterranean open woodlands, Forest Ecology and Management, Rolo V. et al. 2011, 261(11): 1750-1759
  10. Morphological and photosynthetic alterations in the Yellow-ipe, Tabebuia chrysotricha (Mart. Ex DC.) Standl., under nursery shading and gas exchange after being transferred to full sunlight, Endres L. et al. 2010, Agroforestry systems, 78(3): 287-298
  11. Changes in biomass and photosynthetic parameters of tomato plants exposed to trivalent and hexavalent chromium, Henriques F. S. 2010, Biologia Plantarum, 54(3): 583-586
  12. The possible role of quinate in the mode of action of glyphosate and acetolactate synthase inhibitors, Orcaray L. et al. 2010, Pest Management Science, 66(3): 262-269
  13. The role of organic and inorganic solutes in the osmotic adjustment of drought-stressed Jatropha curcas plants, Silva E.N. et al. 2010, Environmental and Experimental Botany, 69(3): 279-285

 


同類產品推薦


提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息: