被猛男CAO烂的小男生GV,古代妓院做爰片120分钟,电影在线观看,国产免费av片在线无码免费看


免費(fèi)注冊(cè)快速求購(gòu)


分享
舉報(bào) 評(píng)價(jià)

LC Pro-SD LC Pro-SD 便攜式智能光合儀

參考價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)

該廠商其他產(chǎn)品

我也要出現(xiàn)在這里

LCPro-SD便攜式智能光合儀為智能型便攜式光合作用測(cè)定儀,用以測(cè)量植物葉片的光合速率、蒸騰速率、氣孔導(dǎo)度等與植物光合作用相關(guān)的參數(shù)。儀器應(yīng)用IRGA(紅外氣體分析)CO2分析模塊和雙激光調(diào)諧快速響應(yīng)水蒸氣傳感器精密測(cè)量葉片表面CO2濃度及水分的變化情況來(lái)考察葉片與植物光合作用相關(guān)的參數(shù)。

詳細(xì)信息 在線詢價(jià)

LCPro-SD 便攜式智能光合儀

LCPro-SD便攜式智能光合儀為智能型便攜式光合作用測(cè)定儀,用以測(cè)量植物葉片的光合速率、蒸騰速率、氣孔導(dǎo)度等與植物光合作用相關(guān)的參數(shù)。LCPro-SD便攜式智能光合儀應(yīng)用IRGA(紅外氣體分析)CO2分析模塊和雙激光調(diào)諧快速響應(yīng)水蒸氣傳感器精密測(cè)量葉片表面CO2濃度及水分的變化情況來(lái)考察葉片與植物光合作用相關(guān)的參數(shù)。LCPro-SD便攜式智能光合儀通過人工光源、CO2控制單元和溫度控制單元可以同時(shí)精確調(diào)控環(huán)境條件,從而測(cè)定光強(qiáng)、CO2濃度和溫度對(duì)植物光合系統(tǒng)的影響。LCPro-SD便攜式智能光合儀可在高濕度、高塵埃等惡劣環(huán)境中使用,具有廣泛的適用性。

 

應(yīng)用領(lǐng)域

  • 植物光合生理研究
  • 植物抗脅迫研究
  • 碳源碳匯研究
  • 植物對(duì)氣候變化的相應(yīng)及其機(jī)理
  • 作物新品種篩選

 

技術(shù)特點(diǎn)

  • 配備手持式葉綠素?zé)晒鈨x,內(nèi)置了所有通用葉綠素?zé)晒夥治鰧?shí)驗(yàn)程序,包括兩套熒光淬滅分析程序、3套光響應(yīng)曲線程序、OJIP-test
  • *自動(dòng)、獨(dú)立控制環(huán)境參數(shù)(空氣濕度,CO2濃度,溫度,光照強(qiáng)度)
  • 精確測(cè)量CO2和水蒸汽
  • 便攜式設(shè)計(jì),體積輕小,僅重4.4Kg
  • 人體工程學(xué)設(shè)計(jì),舒適型肩帶,攜帶操作非常簡(jiǎn)便
  • 微型IRGA置于葉室中,大大縮短CO2測(cè)量的反應(yīng)時(shí)間
  • 可在惡劣環(huán)境下使用,野外工作時(shí)間長(zhǎng)
  • 可方便互換不同種類的葉室、葉夾
  • 葉室材料經(jīng)精心選擇,以確保CO2及水分的測(cè)量精度
  • 數(shù)據(jù)存儲(chǔ)量大,使用即插即拔的SD
  • 維護(hù)方便,葉室所有區(qū)域都很容易清潔
  • 采用低能耗技術(shù),野外單電池持續(xù)工作時(shí)間長(zhǎng),可達(dá)16小時(shí)
  • 實(shí)時(shí)圖形顯示功能

技術(shù)指標(biāo)

  • 測(cè)量參數(shù):光合速率、蒸騰速率、胞間CO2濃度、氣孔導(dǎo)度、葉片溫度、葉室溫度、光合有效輻射、氣壓等,可進(jìn)行光響應(yīng)曲線和CO2響應(yīng)曲線測(cè)量。
  • 手持葉綠素?zé)晒鈨x(選配)
  1. 測(cè)量參數(shù)包括F0FtFmFm’、QY_LnQY_DnNPQQpRfdRARAreaM0SmPIABS/RC50多個(gè)葉綠素?zé)晒鈪?shù),及3種給光程序的光響應(yīng)曲線、2種熒光淬滅曲線、OJIP曲線等
  2. 高時(shí)間分辨率,可達(dá)10萬(wàn)次每秒,自動(dòng)繪出OJIP曲線并給出26個(gè)OJIP-test測(cè)量參數(shù)包括F0FjFiFmFvVjViFm/F0Fv/F0Fv/FmM0AreaFix AreaSmSsNPhi_P0Psi_0Phi_E0Phi-D0Phi_PavPI_AbsABS/RCTR0/RCET0/RCDI0/RC
  • CO2測(cè)量范圍:0-3000ppm
  • CO2測(cè)量分辨率:1ppm
  • CO2采用紅外分析,差分開路測(cè)量系統(tǒng),自動(dòng)置零,自動(dòng)氣壓和溫度補(bǔ)償
  • H2O測(cè)量范圍:0-75 mbar                                
  • H2O測(cè)量分辨率:0.1mbar
  • PAR測(cè)量范圍:0-3000 μmol m-2 s-1,余弦校正
  • 葉室溫度:-5 - 50   精度:±0.2
  • 葉片溫度:-5 - 50
  • 空氣泵流量:100 - 500ml / min
  • CO2控制:由內(nèi)部CO2供應(yīng)系統(tǒng)提供,zui高達(dá)2000ppm
  • H2O控制:可高于或低于環(huán)境條件
  • 溫度控制:由微型peltier元件控制,寬葉葉室可高于或低于環(huán)境14,其他葉室為10
  • PAR控制:由高效、低熱紅/藍(lán)LED陣列單元控制,zui高2000μmol m-2 s-1 (針葉zui高1500μmol m-2 s-1
  • 可選配多種帶有光源的可控溫葉室、葉夾
  1. 寬葉葉室:測(cè)量面積6.25cm2,適用于闊葉
  2. 窄葉葉室:測(cè)量面積5.2cm2,適用于條形葉
  3. 針葉葉室:適用于簇狀針葉
  4. 小型葉葉室:葉室直徑為16.5mm,適用于葉片直徑在11mm16mm之間的葉片
  5. 小型草本植物群落測(cè)量室:測(cè)量高度低于55mm的整株草本植物光合作用
  6. 整株擬南芥測(cè)量室
  7. 土壤呼吸室:體積為1L,含土壤溫度傳感器
  8. 果實(shí)測(cè)量室:兩部分組成,上部透明、下部為體積為1L
  9. 熒光儀聯(lián)用適配器:適用于連接多種葉綠素?zé)晒鈨x

 

小型葉葉室

小型草本植物群落測(cè)量室

整株擬南芥測(cè)量室

果實(shí)測(cè)量室

熒光儀聯(lián)用適配器

寬葉葉室

窄葉葉室

針葉葉室

土壤呼吸室

 

 

 

 

 

 

 

 

 

  • 數(shù)據(jù)存儲(chǔ):1G SD卡,可存儲(chǔ)16,000,000組典型數(shù)據(jù)
  • 數(shù)據(jù)輸出:Mini-BUSB接口,RS232九針D型標(biāo)準(zhǔn)接口,采用38400波特率與打印機(jī)或PC通訊
  • 供電系統(tǒng):內(nèi)置12V 7AH蓄電池,可持續(xù)工作至16小時(shí),智能充電器
  • 尺寸:主機(jī)230×110×170mm,測(cè)量手柄300×80×75mm
  • 重量:主機(jī)4.4Kg,測(cè)量手柄0.8Kg
  • 操作環(huán)境:545

典型應(yīng)用

1. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69

本研究對(duì)不同類型的抗草甘膦大豆進(jìn)行草甘膦處理,發(fā)現(xiàn)大豆的各項(xiàng)光合參數(shù),包括葉綠素含量、氣孔導(dǎo)度、光合速率和蒸騰速率都有所降低。

 

2. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422

本研究設(shè)計(jì)了一個(gè)氣室裝置,用以研究常青櫟(Quercus ilex)在剪去部分葉片(模擬啃食)和加入甲醇(模擬附近其他植物被啃食時(shí)釋放的信號(hào))時(shí)的生理變化,發(fā)現(xiàn)兩種處理都提高了植物的凈光合速率。

 

 

 

 

 

 

 

 

 

 

 

 

 

產(chǎn)地:英國(guó)

參考文獻(xiàn)(近三年發(fā)表近200SCI文章,僅列出部分代表性文獻(xiàn))

  1. Diurnal changes in leaflet gas exchange, water status and antioxidant responses in Carapa guianensis plants under water-deficit conditions, Silva Carvalho K, et al. 2013, Acta Physiologiae Plantarum, 35(1), 13-21
  2. Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization, Dias M C, et al. 2013, Biologia Plantarum, 57(1):33-40
  3. Frankincense tapping reduced photosynthetic carbon gain in Boswellia papyrifera (Burseraceae) trees, Mengistu T, et al. 2012, Forest Ecology and Management, 278, 18
  4. Impacts of leafroll-associated viruses (GLRaV-1 and -3) on the physiology of the Portuguese grapevine c*r Touriga Nacional growing under field conditions, Moutinho-Pereira J, et al. 2012, 160(3), 237-249
  5. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in Pinus pinaster seedlings susceptible and resistant to the pine weevil, Hylobius abietis, Blanch J. S. et al. 2011, Plant biology, DOI: 10.1111/j.1438-8677.2011.00492.x
  6. Photosynthesis by six Portuguese maize c*rs during drought stress and recovery, Carvalho RC. et al. 2011, Acta Physiologiae Plantarum, 33(2): 359-374
  7. Hydrogen peroxide spraying alleviates drought stress in soybean plants, Ishibashi Y. et al. 2011, Journal of plant physiology, 168(13): 1562-1567
  8. Leaf gas exchange in the frankincense tree (Boswellia papyrifera) of African dry woodlands, Mengistu T. et al. 2011, Tree Physiology, 31(7): 740-750
  9. Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422
  10. Is distribution of hydraulic constraints within tree crowns reflected in photosynthetic water-use efficiency? An example of Betula pendula, Sellin A. et al. 2011, Ecological research, 25(1): 173-183
  11. A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek, Sengupta D. et al. 2011, Planta, 233(6): 1111-1127
  12. Differences in stomatal responses and root to shoot signalling between two grapevine varieties subjected to drought, Beis A. et al. 2010, Functional Plant Biology, 37(2): 139-146
  13. The evaluation of photosynthetic parameters in maize inbred lines subjected to water deficiency: Can these parameters be used for the prediction of performance of hybrid progeny? Holá D. et al. 2010,  Photosynthetica 48(4): 545-558
  14. Photosynthesis, water-use efficiency and δ13C of five cowpea genotypes grown in mixed culture and at different densities with sorghum, Makoi J.H.J.R. et al. 2010, Photosynthetica, 48(1): 143-155
  15. Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species, Cuesta B. et al. 2010, Forest Ecology and Management, 260(1): 71-78
  16. Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69
  17. Effect of glyphosate on symbiotic N2 fixation and nickel concentration in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Applied Soil Ecology, 44(2), 176-180

 

 

 


同類產(chǎn)品推薦


提示

×

*您想獲取產(chǎn)品的資料:

以上可多選,勾選其他,可自行輸入要求

個(gè)人信息: